Floer Homology and Invariants of Homology Cobordism
نویسنده
چکیده
By using surgery techniques, we compute Floer homology for certain classes of integral homology 3-spheres homology cobordant to zero. We prove that Floer homology is two-periodic for all these manifolds. Based on this fact, we introduce a new integer valued invariant of integral homology 3-spheres. Our computations suggest its homology cobordism invariance.
منابع مشابه
Involutive Heegaard Floer Homology
Using the conjugation symmetry on Heegaard Floer complexes, we define a three-manifold invariant called involutive Heegaard Floer homology, which is meant to correspond to Z4-equivariant Seiberg-Witten Floer homology. Further, we obtain two new invariants of homology cobordism, d and d̄, and two invariants of smooth knot concordance, V 0 and V 0. We also develop a formula for the involutive Heeg...
متن کاملCombinatorial Cobordism Maps in Hat Heegaard Floer Theory
In a previous paper, Sarkar and the third author gave a combinatorial description of the hat version of Heegaard Floer homology for three-manifolds. Given a cobordism between two connected three-manifolds, there is an induced map between their Heegaard Floer homologies. Assume that the first homology group of each boundary component surjects onto the first homology group of the cobordism (modul...
متن کاملFloer Theory and Its Topological Applications
We survey the different versions of Floer homology that can be associated to three-manifolds. We also discuss their applications, particularly to questions about surgery, homology cobordism, and four-manifolds with boundary. We then describe Floer stable homotopy types, the related Pin(2)-equivariant Seiberg-Witten Floer homology, and its application to the triangulation conjecture.
متن کاملFloer Homology of Brieskorn Homology Spheres : Solution to Atiyah’s Problem
In this paper we answer the question posed by M. Atiyah, see [12], and give an explicit formula for Floer homology of Brieskorn homology spheres in terms of their branching sets over the 3–sphere. We further show how Floer homology is related to other invariants of knots and 3–manifolds, among which are the μ̄–invariant of W. Neumann and L. Siebenmann and the Jones polynomial. Essential progress...
متن کاملInvolutive Heegaard Floer Homology and Plumbed Three-manifolds
We compute the involutive Heegaard Floer homology of the family of threemanifolds obtained by plumbings along almost-rational graphs. (This includes all Seifert fibered homology spheres.) We also study the involutive Heegaard Floer homology of connected sums of such three-manifolds, and explicitly determine the involutive correction terms in the case that all of the summands have the same orien...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998